Raineo
 Flood becomes fiction

Raineo*:

 the Stormbox system

Highway
 or waterway?

r//l. Contents

12. Design guidelin
12.1. Hydraulic conductivity
12.2. Determining the infiltation suitability of soil
12.3. Hydrculic conductvity
12.4. Guidelines on racinwater infiltation in into the gorlour
12.4. Guidelines on r ainwatier
12.5. Dimensioning guidelines
12.6. Precipitatition regions
12.7. Probability of precipitation
12.8. Protecting systems from overload

 the fist wave of runolf
Colculating the required size of a rainwater influcting 12.13. Calculuting the required size of a rainwater nifitation
12. 14. Example colculctions of the required number and
volume of boxes 13. Operction of the infiltrotion system
13. Operction of the infiltration sys
13.1. Maintenance work
13.2. Operation in winte
14. Standard requirements
15. Product rence

39
39
40
40
40
40

ㅍ/l/. 1. Technical description

1.1. General information

The Stormbox system is designed to manage rcainwater by retention and non-pressure
distribution and infiltration into the ground Rainwater collected from building roots cond
induustrici facilities is directed through gutters. discharge pipes and sewage pipes into a
chamber with a settling tonk, and then to chamber with a settling tank, and then to Rainwater collected from other hard surfac such as roads, car parks, streets, yards and
green areas, run through linear droinage systems. storm inilets and pre-treatment devices e. .g. settling tanks and h.
into the Stormbox system.

The progress of civilisation has meant the particularly in urban agglomerations, rainwate
from hard, impervious surfaces (roois, streets
 systems or combined sewage systems. Where
runoff is directed to water treatment plants, runoff is directed to water treatment plachts,
causes and increassed treatment costs Directing runoff to sewace ssystems leads to
an increase in pipe dimensions (unnecess overdimensioning), and consecuuentily to to significantly higher pipeline instanlation costs It is estimated than t tpprox. 80% of runoff ends up in rocinwacter drainacge systems ond water

The situation could be improved by the construction of retention and retention-infiltratition
tanks. Appropriate tanks. Approppiate management of rainwale
in its catchment area may also ouleviate the
consequences of poent

Why is rainwater infiltration such a a good idea?
Whate is one of those
Water is one of those natural resources have no substitute. In some countries condition
with regard to coccess to water, annual amoun of precipitation, very large fluctuations in
temperature and omount of crainfall cre temperacture and amount of rainfall are
significantly worse than in other countrie. significantly worse than in other countries
Inland fresh surface waters (rivers, lakes. estuaries, ponds and artificicil water reservoirs
constitute approx. 2.5% of the country's area

Fluctuating climate conditions and weather hearvaies stocusse an excess of water during heavy storms or snow meltdowns
defifits during periods of drought
Modern runoff drainage planning
Involves decreasing and slowning down the
outtiow from impervious surfaces. The progress of urbanisartion leadis to the the destructution prog of natural water flow paths. Hence the
 underground retention and infilitration systems.
It is recommended that rainwater should be It is recommended that rainwater should be
collected in the orea where it falls, and then
allowed to infiltroce int it the ground or stored allowed to infiltrate into the ground or stored
as required. Percolating to the greater depths as reauired. Percolating to the greater depths groundwater resources

Directing rainwater into the ground does
not incur any additional fees (as opposed to not incur any additionall fees (as oppose
discharging it into the sewage system). It is aliso possible to increase small retention to water green areas, for cleaning and rinsing purposeses, or as processs water in service and
industrial faccilities. Tesidential purroses (changeser in thustroaca-
bearing capacity of the ground, cracks in buildings).
increasises the efficiency of water treatment
helps to av
drainage systems.
improves the condition of urban open wates Iowers the inpact of the fliw from a
distribution or combined sew distribution or combined
on the sewage receiver. The construction of modern underground dracinage systems may contribute to the
protection of ground and surface waters.
1.2. Basic technical information

The basic Stormbox system kit includes.
Stormbox infiltration boxes.
Stormbox infiltration boxes
around plates

- ground plates

Cilps to connect the boxes,
geotextile to protect the boxes,

setlling chambers for rainwater drainage
system (DN/OD 400, DN/ $/$ OD $630, ~ D N / I D 800$
system (DN/
DN/ID (1000)

- sewage pipes and connectors,

200. 500 mm adaptorts.

帾

Stombox		Sasipition mad inctions	Baste cimmensons, materetal	
Stom		boxes with open-work walls, to be connected into modules (vertically and horizontally) a placed in a trench on gravel bedding, and in case of poor permeability used for rainwater retention and infiltration	material: dimensions: net water capacity: weight: connections: \qquad	green polypropylene (PP-B) $1200 \times 600 \times 300 \mathrm{~mm}$ 2061 , 8.8 kg $\mathrm{d}_{\mathrm{n}} 110,125,160,200 \mathrm{~mm}$ $d_{n} 200,250,315,400,500 \mathrm{~mm}$ (through an adaptor) 8
	ound plate	ground plate to be connected to a box used only for the first layer of boxes elements used to join boxes into modules vertically and horizontally	$\begin{aligned} & \text { material: } \\ & \text { dimensions: } \\ & \text { weight: } \\ & \text { material: } \\ & \text { dimensions: } \\ & \text { Weight: } \end{aligned}$	green polypropylene (PP-B) $1200 \times 600 \times 20 \mathrm{~mm}$, 2.07 kg, black polypropylene (PP-B) $36.5 \times 21.5 \mathrm{~mm}$, 2.3 g

$\because / / /$ 2. The advantages of Stormbox

///. 3. Standards, approvals

 certificatesAT-15-7731/2008 тTB
AT/2008-03-2402 IBDiM
Stormboos system elements for radinwate
infiltration ${ }^{\text {s. }}$
Standards: RRL 52250
Kunststof infiltratiesystor
Certificates:
KOMO KiWA N.V.K54088/01 (the Netherlands)
IBAK KOKS RIDDERKERK (the Netherlamds) IBAR KOKS RIDDEREERK (the Netherlomas)
IBAK Retel IPEK
 (Austric)
roinwater infiltration.
wateres storace criten
Geomembaragene. (retention tanks) using
infiltration of w
regulations.

traffic routes such as car parks and yards
with car and HGV traffic (LUW 12 , SIW 30 . with car and
SLW 0 .
green oreas

5.1. Installation parameters for areas

5.1. Installation parameters
subject to traftic loads
minimum depth of the
subject to trafirc loads
minimum depth of the
infiltration boxes: 0.8 m

- ground compaction around the boxes. min | 97\% Standard Proctor Density, |
| :--- |
| standard numberes: | - standard number of box layers: 6 for HGV

traffic load (box height maxx 1.82 m), 10 for traffic load (box height max. 1.82 m), 10 ft
car traffic load (box height max. 3 m).
 boxes are to be placed at α lower level,
please please contact Pipelifie for an analy ysis of the
ground conditions and expected loads.
5.2. Installation parameters for green areas

- minimum depth of the
infiltration boxes: 0.4 m
-riound compactit m .
95\% Stamdarad Proctor Density - maximum number
height max. 3 m .

Elements of the rainwater distribution and Sewace pipys amd the infilitrtation chomberber, the connected using standard socket and spigigot ionts

The Stormbox kit is useful in creas with how The Stormbox kit is ssefil in areas with Iow
groundwacter levels in ilight and permeable
soils ond in cohesive soils (low permeability) combined with a gra
rate of infiltration.
The system mary also be used to store water
when isolacted from the surrounding when isolated from the e surounding soil, for
example by using a geomembrane.
The following conditions should be met when
using the Stormbox kit:
the sutter system should be connected to the settling chamber and the infiltrction b
module using external sewage PVC-U or

 wrapped with polypropylene filter
the Stormbox kit should be used in
accorddance with the Manurfacturer's desion
and installation guidelines, as well as with
applicable stand drads;

- the racain
PNIIII gratings should comply with PN-EN 124
the intita
- the infiltration boxes should be located at

Ieast 1.0 m above groundwater lecevel
rainw
rater drainage pipes should be placed Iainwater drainage pipes
a slight downgrade angle
the distance between the infiltration boxes
and the builing hhould be tes least 1.5 of the
buildoing's foundation's depth.

Construction of the Stormbex infiltration and retention box

Dimensions of the Stormbox infiltration and retention box

!//. 6. The structure of the Stormbox
6.1. Infiltration box

Stormbox infiltration boxes are cuboid, with 5 Stormbox infiltuation boxes are cuboid. with
taces (no bottom). Inside the box ore vertical
suports plineot to supports, clipped to appropriate holes in the
ground plate or in the box underneath. ground plate or in the box underneath.
In the top part of the box are 2 inspection openings. for constant access to the inside of
the box and bleeding the ciir out. There are 2 inspection openings in the front and back walls and 1 inspection opening in each of the side All the side walls of the box have openings
to connect the ecainacter dring to connect the rainweter darianege system,
ventilation pieses and wach ond inspection ventilation pipes, and wash and inspection
pipes, diameters $d_{1} 110,125$ and 160 mm , and in the top wall $\mathrm{d}_{1} 110,125,160$ and pipes $200-500 \mathrm{~mm}$ in diameter

Pipelife Stormbox infiltration boxes have undergone load resistance anclysis using the
Finite lements Method (FEM) and laboratory

Cllo
The tests have determined that the Stormb
is resistant to a short-term vertical load of $579 \mathrm{kN} \mathrm{m}^{2}$ and 1 lateral lenthtwise locad of $34 \mathrm{kN} / \mathrm{m}^{2}$. The test resu
fesistance of the boxes.
The boxes comply with load resistance
requirements of standard BRL5 5250 (the equirements of standarad BRL 52250 (the
Netherlands), which speciifes a 3 days vertical
 m^{2}. The high load resistance and quadity of the
boxes has been conifimed by the Kiwa N.V.

sare stored and	
pallets 1.2 mxl 1.2 m , in 8 layers (height 2.4 m).	Due care should be taken when loading and
forklift trucks Boxes may be stored outcoors on	$5^{\circ} \mathrm{C}$. The Stormbox system elements sho
age	at
a period longer than 12 months they should	to
be stored in shade or, if necessary, covered with	the

ight-coloured, opacque tarpeaslinin, covered with

Rain water from a building roof or another drain
ea surface (e.g. a yard) is directed through
 chamber where mechanical impurities are
seppratade, and then through sewage pipes to
sifiltrotion boxes wh separated, and then through sewage pipes to
infiltration boxes wracpeed in filtration mats,
that water may infilitrate into the croound. that watter may infiltrate into the ground.
The infiltration boxes are combined horizontally The inilitration boxes are combined horizontally
and vertically yino modules, whose size depend
on the requirements the module size macinty on the requirements the module size mainly
depends on the size of the drained crea and depends on the size of the draided area and
the degree of soil permeability). In order to accelerate the filling of the system, the other end
of the box set should be ventilited by means of the box set should be ventilcted by means
of a PVC-U sewage pipe $d_{n} 110 \mathrm{~mm}$ (160 or 200 of a PVC.U sewage pipe $\mathrm{n}_{\mathrm{n}} 110 \mathrm{~mm}$ (100 or 200
mm) which should be be connected to the hole in the top plate of the box. A ventilation pipe with
an air valve cover should extend above ground

PVC-U or PP pipes and fitings stor external sewage sytems compliant with PN-EN
1401-1, PN-EN 13473 -2 or PN-EN $1852-1$ are used 1401-1, PN-EN $13473-2$ or PN-EN $1852-1$ are use
to connect he gutter system the the supply
setling chamber, the infiltration boxes and the setling chamber, the infiltration boxes and the
ventilation chamber. When using structuracl PP-B Pragma pipes (compliant with AT/99-02-0752-03
and PN-EN $1347-3$), dadapters for PVC-U Sewage pipes should be used.
DN/OD 400 and DN/OD 630 settling chambers are made of polypropylene etecchnical
parameters complen
 0096 approval). PRO 800 and PRO 1000 setling
chambers are made of polypropylene (technical parameters compliant with the $A T / 2005-02-1538$.
02 and $A T / 2004-04-1717$

The outlets of the settling chambers might be fitted with a device blocking impurities from
entering the box set, e.g. selicclecning steel filters Before the boxes are laid down, it is necessary to decide the points where inspection equipment
will be inserted through mamholes PRO 800 PRO 1000 and vertical inspection pipes. depending on the siciza of the system Thipes, hole diameters make it possible to introduce cleaning
equipment or CCTV into the box module throug equipment or CCTV into the box module throug
6 openings $(110,160 \mathrm{~mm})$ located on the side walll of the boxes and through the 2 openings
on the top (110. 160.20 mm)

11.1. Diagrams of various Stormbox arrangements
stormbox infilitration boxes may be arranged in the following conifigurations:

(c) Double ow (top remp

8 \% 又

(2) Double row,
several layers (lateral view)

(2) Stormbox units arranged

(h)

9. Fill the sides with $15-30 \mathrm{~cm}$ layers of grave
pack, grain size e.g. $8-16,12-24(30) \mathrm{mm}$ the ground. Adjust the ground compaction evel to the expected locad
Cover the boxes with a $10-15 \mathrm{~cm}$ layer of
sand (without stones or other sharp-edged
elements whict elements which might dimaragacthe-edged
or the boxes) and compactitit.
To make an initicl calculation of the necessary
number of clips, regarales of the number of number of clips, regardes of the number of
layers, use the following formulca number of boxes $\mathrm{x} \approx 14$ pcs. Pipelife can calculate the exact
number of clips for a given solution.

When conducting groundwork, laying out and assembling the boxes and the plastic pipes,
observe standards PN-EN 1610 . PN-ENV 1046 .

To ensure adequate support for the boxes. it is
necessary to determine the technical properties hecessary to odetermine the technical properties
of the materials sused to fill in the trench, in of the matericils used to fill in the tiench, in
particulcur the side fill ond it compaction.
Geotextile parameters should be chosen basea Geotextile parameters should be be cosen. based
on the boo crangsement and the expected loads.
It is eceommended on the box arrangement tand the expected loads
It is recommended hhat gootextil which comes
in contact with oravel should have the tensile
strength of over $8 \mathrm{kN} / \mathrm{m}$ and static puncture strength of over $8 \mathrm{kN} / \mathrm{m}$ and static
fesistance (CBR) of over 1.2 kN .

Technical parameters of selected polypropylene geotextiles

Diagram show Hhe typical installation
 installation ota rainwater infiltation boz

of a rainwater
infiltration box.

Laying down of the geotextile, ground plates
and firist layer of toxes. © It is inportant to remove the internal grids to create inspectio
channels.
2. Laying down subsequent layers of boxes in
an caternating pattern the middle boxes turned by a 9osDgr angle), building a stable module.
Wrapping the geotextile around the boxes
4. Wrapping geotextile around
filling the sides of the trench
5. Example layout of dn 200 mm inspection

1.3. Sequence of tasks to be performed when
installing a rainwater storage system

Dig a trench at least $40-50 \mathrm{~cm}$ wider than
Remove any protruding stones from the trench bed and lay down min. $10-15 \mathrm{~cm}$ of sand
bedding (no stones). Even out and compact bedaing (no s.
the ground.
Remove the open-work covers from the
eonnection points of the 160 mm supply pipes connection points of the 160 mm supply pipes,
$10-220 \mathrm{~mm}$ ventilation pipes and 200 mm nspection pipe

Next lay out the second layer of geotextile at
the bottom, leaving an overlap of $15 \mathrm{~cm}-50$ cm and on appropriate amount at the sides to be able to wrap the boxes on all sides.
5. Lay out the ground plactes and boxes on the
geotextie and connect them togeth on geotextile and connect them together, using
clips. The points where clips should be placed clips. The points where clips shoul.
are marked with the word "CLIP".
Carefully wrap the geotextile around the
boxes. learving a ovorarlap of $15 \mathrm{~cm}-50 \mathrm{c}$ At the inlets prepare openings by making culs
 The foil cdimensions $2 \mathrm{~m} \times 20 \mathrm{~m}$) is laid out with
4. 4 相

openings at the inlets of supply, ventilation and inspection pipes into the boxes. . evex
prepare pipes of a total length of 50 cm prepare pipes of o total length of 50 cm
(excluduing the socket). Onto each of the prepared pipe ends place α butyl gasket and
then a foil sleeve, which should be welded to then a foil the pipe.
Insert approx. 20 cm of the pipe into the
box opening, and then weld the foil sleeves box opening, and then weld the foil the teeves
around the pipes. Place a metal tim around around the pipes. Place a metal rim around
the foil sleeve and tighten the pipe joint. The im oil sleeve and tighten the pipe joint. The

Technical parameters of geotextiles used in the construction of underground retention tanks

 the diameter of the pipe, insert a PVC.-., Pp-B
pipe approx. 20 cm long. Carefully secure the
connection so as to prevent the soil from entering onnection so as to prevent the soil from entering he box modul.
The illustration above shows α box with
prepored 160 mm holes. prepare 1100 mm holes. When building wide tanks with α large, flat
surface, plan water supply connections in
 can make holes in the other sidd
top boxes in a similiar manner.
At the top of every box there are 2 openings d_{n}
110,160 or 200 mm , which can be used to insert cleaning equipment or CCTV all the way to the bottom of the box module (providided that the
open-work covers have been removed trom the pen-work covers have ben t.

160 mm inspection openings at the
top of Stormbox
Every Stormbox has holes located dolong the
same horizontal ond vertical oxis If allows scame horizontal and vertical axis. It allows
access int the boxes as far as the other end access int the boxes as far as the other end of
the box module, both through the side walls and
through the top.

The top inspection opening mary be used for
the duct connector of $a d_{1} 160,200 \mathrm{~mm}$ PVC-U
 sewage pipe with a socket. Vertical sewage
pipes running to the level of the ground soould
be instanled at the points of the top at which be installed at the points at the
inspections will be carried out.
The pipes should be covered to protect them Tre pipes shoula be covered to protect them
trom inadvertent woter entry. The polypropylene
reinorcements should be cut out trom the holes socated on the sides and at the top,

Diagram showing the connection of a boz
module to a PRO 800, PRO 1000 chamber

Settling chambers PRO 400 and PRO 630 may be
fitted with a settling bucket, located underneathl fitted with a settling bucket. located underneath
the inlet to the chamber, where leaves and othe debris will collect. This solution is particularil
usefuli if there ore trees near the building

For draining yards or car parks there are
inspection chambers with a telescope inspection chambers with α telesscope and
frame, $T 30 \mathrm{~K}$ (12.5 t) or $\mathrm{T} 5 \mathrm{~K}(25 t$) and a settling bucket, made of PE or galvanised steel. The setling bucket with a steel frame should be
placed inside the telescope. The settling buckets are supported by special grips which h fit buth the
short $(\mathrm{h}=25 \mathrm{~cm})$ and the long (h) h (m) model

Diagram showing an example
connected with $\alpha 160 \mathrm{~mm}$ pipe

1. PRO 800 , PRO 1000 chamber wit
settling tonk and filter
2. 1100 mm PVC-U sewage pipe,
3. Stormbox,
4. telescope $T 20$

5. PRO 400 chamber,
6. ventilation pipe with air valve
cover 110 or 160 mm

PRO 1000 or PRO 800 settling chamber
with a steel filter
Filter properties:

- Made from stainless steel,
: Large filitration surface,
- Conical shape for easier self-cleacring,
- Filler diameters $100+400 \mathrm{~mm}$ for larger flows
- Filter diameters $160 \div 400 \mathrm{~mm}$ for larger fil
(arger dracinage oreas),
Filter diameter 110 mm for small flows

(small drainagege areas),
- Can be used with 90° tuple connectors to
- Can be used with 90° triple connectors to
external sewace systems
- Con beused in plyststcand concrete chambers,
- Con be used in plastic and concrete chambe
- The number of itrets the tue utitet (up to 4)
con be adiusted to the diometer of the can be adiusted to the diameter of
Chamber inlet (up to 400 mm).
- Quick installation of the chamber and filter
at the site. at the site.
The top part of the filter should be inserted into
the socket of the t tiole connector, and the steel The top part of the inler shoula be inserted into
the socket of the triple connector, and the stee
catches should be fixed with aclomping ing catches should be fixed with a clamping ring.
To preserve the minimum safe distance of 50 mm trom these concreter ing, trim the top part of the
from mi reducer outlet by 26 mm (to 35 mm)
Selecting the hole diameter in the outtiow regulator

PRO 800 , PRO 1000 settling chamber with
outtiow regulator

1. pipe 160 mm • L - the length of the
pipe depends on the height of the box 2. modue,
2. gasket 1.00 mm .
3. pipe 160 mm .
4. pipe 160 mm ,
5. trinele connector
6. outflow regulator.

Diagram showing a PRO 1000 or PRO 800

1. pipe d_{n}. 4 -lip seal ing
2. 4 -ip seal ing
3. thormox ocical filter,
4. triple connector d $_{n} \times \mathrm{d}_{n} 90$ SDgr
5. triple connector
outhow reguldor

Recommended practical parameters
for high pressure cleaning: for high pressure cleaning:
For soft deebis and impurities.
on har For sot debins and
60 bar is sufficient.
Rinsing pressure/flow speed:

1. Recommended nozzle pressure: up to 60
$6 \mathrm{~m} / \mathrm{min}-12 \mathrm{~m} / \mathrm{min}$.
Rinsing equipment
Choose rinsing e equipment using low
pressure end large emounts of woter pressure and large amounts of water.
Avoid methods requiring high pressure and small amounts of water. Choose nozzle size based on the equipment used a

Diagram showing an example of a Stormbox
system with a settling chamber PRO 400 mm or PRO 630 mm with α cascade of the inlet and α PRO 630 mm with α cascade at the inlet and
200 mm or 400 mm inspection chamber

settling chamber 400 mm or 630 mm with

cascade
2. PVC. U sewa
3. 160 mm ,
3. Stormmox
4. 200 mm inspection
4. 200 mm inspection
Chamber with telescope
To5M (5 to $)$ t $720(40$ t $)$
ventilation pipe with dir valve cov
160 mm

Diagram showing an example of a Stormbox Syagram showing an example or a stormbox
system with a setting chamber 400 mm or
630 mm at the inlet and a 200 mm or 400 mm
inspection chamber

1. setting chamber 400
mm or 630 mm
2. PVC-U Sew
160 mm .
3. | 160 mm , |
| :--- |
| 4. 400 mm c |
4. 400 mm chamber wit
5. $\begin{aligned} & \text {. } 100 \mathrm{~mm} \text { m inspecetition } \\ & \text { chamber with telesco }\end{aligned}$

Chamber with telescope
TOSM (5 t) or $T 20$ (40 t) $)$
TOSM $(5$ t or $T 20$ ($(40$ t t)
ventilaction pipe with
valve cov
160 mm

1
1.7. Minimum distances from the building or
other objects

Minimum distances between the infiltration
2.0 m from a building with insulation,
5.0 m from a bubulding w without insulation the distance between the infiltation boxes
and the building should be at least 1.5 of the uilding's foundation's depth . 3.0 m from tree
2.0 m from the plot boundary.
1.5 m fom water or gas supply pipelines.
0.8 m from wawer or cables 0.5 m from telecommunication cables,
1.0 m from groundwater level.
11.8. Digging trenches
earthwork may be done manually or
mechanicanl,
the trench bed should be even, with out
shameedged elements uniformy supop sharp-edged elements, uniformly supporting
the boxes along the whole length of the tank. the recommended method is to dig the trench to $5-10 \mathrm{~cm}$ above the placmed devel of the trench bed when working manuadly or 10 mechanically, and then manuually doepeng it
to the planned level, forming the apopropicte to the
profile,

- profile,
tench should be secured against landslides to preven
entering the boxes.
- the trench should be filled with permeable materials, such as gracreve, working in incyers
and compacting the vround to the require and compacting the ground to
level, as per documentation.

1.9. Preparing the trench bed

 en bed must be even, without large stones, large lumps of sili or frozen macteridil. Itmay be more cost effective to mechanically dig frenches to a cricetere depth, and then even out
he bottom by spreading out appooriate grate the botiom by spreading out appropriate grace cost efficient solutition since it trequines most cost efficient solution since it requires the least
compaction to cochieve the correct density.
Permeable graded material (sond. rockfill eermeable graded material (sand, rockiill
splaced in the trench using appropriate equipment, and then manuaclly evened out and
formed to ensure that the ground is suitable, well ormed to ensure that the ground is suitable, well
compacted and ready to provide good support compacted and ready to provide good support
or the box modules. A sutitable mod mades allso achieved using soil dug
out trom the trench and approporiately preapored. out from the trench and dappoporiatally y preporaced,
provided the soil does not contain large stones more than 40 mm in diameter), hard lumps or debris, and can be compacted to the right

Matericls used for the side fill and backifill must hot have sharp edges or frozen lumps of soill Soils
containing large rock fragments ond soils with Containing large rock fragments and soils with
high organnic content.c caked silt high organic content, caked silt and aggradate
mud should not be used for bedding, either on their own or mixed with other matericils.
10.10. Soil classification

Category
Category I Includes gravel and coarse rockfiil
with groin size $4-8,4-16,8-12,8-22 \mathrm{~mm}$ with grain oxit $5-20 \%$ of 2 mm gexin mm . A maximum of $5-20 \%$ of 2 mm grains is
Category II
Coarse sand
 ciev approx. 40 mm and other gradiedem sards
and gravels of various grain size, with a smal percentage of smoll particies. Generochly these percentage or small particles. Generadily these
cre granulur moterict, non-cohesive both when
dry and wet. This cateogry olso includes dry and wet. This category y ciso includes various
uniform ond non-unififm uniform and non-uniform gravels and sands, or
mixtures of sand ond gravel with varying small mixtures of sand
particile content.

A maximum of $5-20 \%$ of 0.2 mm grains is
allowed. It is good bedding matericl.
Category III
Fine grade sands, clayey gravels, mixtures
of fine sand, clayey samd or eravel ond cle

 maximum of 5% of 0.02 m mm gricins is allo
is moderately good bedding material.

Infiltration systems should not be installed in
soils belononifig to cotegary IV and V V Such soils soils belonging to category IV dnd
should aliso not be used for sidefill

The degree of compaction, with relation to the stability of the structure, deepends on the load

Degree of soil compaction for various compaction classes

compation	Desesiption			Backill mateital goup			
	Endilan	Fiench	Commm	4 SPD \%	${ }_{\text {SpD }}{ }_{\text {\% }}$	${ }_{\text {spD }}{ }^{\text {\% }}$	$18 \mathrm{SD} \%$
	$\begin{aligned} & \text { Not } \\ & \text { Moderate } \\ & \text { Well } \end{aligned}$	$\begin{aligned} & \text { Non } \\ & \text { Modéré } \\ & \text { Soigné } \end{aligned}$			$\begin{aligned} & 79 \text { to } 85 \\ & 86 \text { to } 92 \\ & 93 \text { to } 96 \\ & \hline \end{aligned}$		

conditions:

- under yards, car parks (road traffic):
une
the required degree of sidefill compact
- the required degree of sidefill compaction
min 97% SPD", recommended. $98-100 \%$
- without road troffic:
- the reauired degree of sidefill compaction is

95\% SPD

- $\begin{aligned} & \text { for elements with a cover layer of up to } 3 \mathrm{~m} \\ & \text { the esidefill should be compacted to min. } 97 \%\end{aligned}$
- higher degrees of compaction may be used
e.g. due to equirements regarding the surface structure.

In the absence of detailed information regarding naturacl soili, it is usuadly assumed that its
consolidation coefficient is between 91% and consolidation coefficient is between 91% and
97\% of Standard Proctor Density (SPD). In oreas with radat tarfific high (H) degree
of compaction should ibe used. It it not of compaction should be used. It is not
recommended o sue ciow (L) degree of compaction for group 4 or 3 soils without roak
traffic. traftic.
Table 3 sho
Table 3 shows the maximum layer thickness
 speciiied degree of compaction for varioun typ
of compacting equioment tha backition material of compacting equipment and backilil material.
It also shows the minimum thickness of the col layer above the pipe before using gappropria

Descripition	Compaction index			
Standera Proctor Density $[$ [2]	¢ 80	${ }^{81.90}$	91.94	95-100
How seve number	0.10	11.30	${ }^{31.50}$	> 50
Expected degree of consolidation in compaction classes	${ }_{\text {Low (L) }}$			
		Medium (a)		
			High (i)	
Gicmular sol	10088	modecretily compected	compacted	hearvily compacted
Conesve ema organc soll	sott	compact	stiff	nard

Recommended layer thickness and number of compaction passes

11.12. Example resistance calculction

Pipelife can cliso perform resistance calculations
ort boxes stacked under various loca conditions according to the methor various loade
IV
such load calculations assume a long time
period of 50 vecars and take into account the period of 50 years and take into account the
scaity factor, everyday load frequency and average stiffness modules of the materials use Fesistance calculaltions
Maximum shor-t-term resistance is: $579 \mathrm{kN} / \mathrm{m}^{2}$ to vertical locads
$134 \mathrm{kN} / \mathrm{m}^{2}$ to loteral locas
Maximum long-term resistance is:

- $100 \mathrm{kN} / \mathrm{m}^{2}$ to verticall loads

Conclusions
Conclusions: layer of at least 0.8 m for HGV traffic load of
LWW 40 SIW 60 assuming ground compaction SLW 40, SLW 60 assuming ground compaction
at least 95% and appropriate surface structure
(at less 40 cm).

Example calculations for various box arrangement conditions

Heght			Soli puamemeis		Traffic locad			
$\mathrm{n}_{\mathrm{m}}[\mathrm{m}]$	n_{t} [m]	$\mathrm{n}_{4}(\mathrm{~m})$	sasemily ype	Stemat				
1.0	${ }^{1.82}$	${ }^{26}$	${ }^{\text {G1 }}$	${ }^{95}$	${ }_{\substack{\text { siw } \\ 600}}$		54	10
${ }^{1.8}$	${ }^{1.82}$	3.62	${ }^{\text {G1 }}$	${ }^{9}$	$\underbrace{\text { co }}_{\substack{\text { Stw } \\ 6000}}$		${ }^{67}$	${ }^{13}$
${ }^{0.8}$	${ }^{1.82}$	262	${ }^{\text {c1 }}$	95	${ }_{\substack{\text { sim } \\ 400}}$		45	9
2.18	${ }^{1.82}$	40	${ }^{\text {c1 }}$	97	$\underbrace{}_{\substack{\text { siw } \\ 4000}}$		60	${ }^{13}$
${ }^{0.8}$	${ }^{1.82}$	2.62	${ }^{\text {c1 }}$	95	$\begin{aligned} & \text { SLW } 30 \\ & (30 \mathrm{t}) \end{aligned}$	$\begin{aligned} & \text { Asphalt } \mathrm{h}_{1}=0.1 \mathrm{~m}, \\ & \mathrm{E}_{\mathrm{p}}=10,000 \mathrm{MPa}, \\ & \text { rockfill with cement } \mathrm{h}_{2}=0.2 \mathrm{~m}, \\ & \mathrm{E}_{\mathrm{p}}=8,000 \mathrm{MPa} \end{aligned}$	46	9
0.5	${ }^{1.82}$	232	${ }^{\text {c1 }}$	${ }^{95}$	${ }_{\substack{\text { LKW } \\(120)}}^{\text {2 }}$		${ }^{64}$	9
243	1.82	43	${ }^{\text {a1 }}$	95	none	Giren crea	${ }_{60}$	13

 Co the Poish method the dorop in water

3. Hydraulic conductivity In order to be suittable for rainwater . infilitation, hydraulic conductivity
12.4. Guidelines on raii
nfiltration systems are usually designed vithout dradinage. It is possible, however, the infiltration system to be equipped with
an emergency overflow, through α settling an emergency overitiow, through a setiting
chamber to a another receptacle of rainwate such as a rainwater drainage system. Soill
permeability, tank depth, number and thick permeability, tank depth, number and t thickn the box system and groundwater level ore particularly important when designing a solution
of this type

The useful volume of the box system should be
chosen based on the least favyurable conditio h practice for precipitation lasting from 15 min o 300 min. The omount of precipiptation should
 ppstream of the infilitration system in order to
capture mineral impurities.
When draining car parks and roads, the infilitation system should be protected from
an influx of excessivive omounts of tetrolew an influx of excessive amounts of petroleum
derivatives by the use of a hydrocarbon separator.

For hydrauic calculations, Pipelife used
precipitation dict precipitation datad from local weather institutes
and weather stations. The absorotion system and weather stations. The absorption system
should be chosen based on the accepted roinfall should be chosen based on the e accepted rainfall
intensity for α given region. The retention and
infiltration system must have enoropiote storac infilitation system must have appropopriotan stotrage
capacaity to hold the water until it infitrates into capacity to h ha
the ground.

 reliable criterion e.g.f. for byparss separato
not tor retention and infiltration systems.
When calculating tank dimensions, it is
When calculating tank dimensions, it its necessary to take into account precipitation
lasting from 15 to 360 minutes, for which the
required size of the box module is orgsest for the Yequired size of the box module is large
critical time ond intensity of rainfall).

According to ATV-A 117 and ATV-A 138 , tue maximum capacity of a retention tank must be
chosen based on rocinfall intensity and duration so as to ensure reliability of the system in case of

The following data is needed to calculate tank $\underset{0}{\text { dimensions: }}$ type and drea of the drained surface $\left[\mathrm{m}^{2}\right]$ - type and area of the drained surface $\left[\mathrm{m}^{2}\right]$] - tyintion size of the trench, installation dep deph etc
2.7. Probability of precipitation

According to ATV A-118 the following rainfall values are accepted:
$\% .10 \%$ for rural s - 000 for nural settlements-1 1 ved p $=50 \%$ for urban settlements -1 in 2 year event (taking into account flooding)
$\mathrm{p}=20 \%$ for obiects in town contres $\mathrm{P}=20 \%$ for objects in town centres and
manuufacturing and sevvice centres -1 in = Year event not taking into caccount fliooding e.g. underground facilities tow-level pas

Y 1×2 The system must not be overlocaded by the chosen
design roinfallil In urban settlements the looding Iessign rainfuil. In urban settements the flooang vent), in town centres once every 30 years (1 in
3o year event), and for underground facilities it 0 year event), and for underground facilit
nce every 50 years $(1$ in 50 year event)

Methods of preventing the overload of retention
tanks in case of selection tor short trainall duration): - Water flowing out to the -appropriate modulation surface, wite water elevation in the system over α short period of time, - water flowing out into
directed to a receptacle

- directed to a receptacale, conection to a reepeptacle through an
overtiow chamber with backwater protection
When designing underground rainwater When designing underground rainwater
infiltrotion and storage systems emergency
overifow should be plamned. The overfiow verfiow should be planned. The overfilow protects the system from an overload caused or calculaltion nururposes, with an appropriate exceedance probability.
The level of reliability should be increased in
underground indiltrotion systems located in underground inilitration systems socotaded in
industricil areas which are subiect oddidional industrial areas which ore subiect to additiond
contomination hazardss. Such is the case wher contamination hazaras. Such is hhe case wh
here is \boldsymbol{a} risk of mallunction related to the leaking of petroleum derivariteves or chemicacls.
Such surfaces should be isolated using special treatment devices, e.g. control chambers.
 separators. Valves may be installed between
devices to cut off the flow if necessary. Tanks ollect the eycess of contaminateded water shoul collect the excess of co,

12.9. Calculcting the amount of runoff trom α given cotchm

$Q=F \cdot \psi \cdot q\left[d^{3} / s\right]$

The surface runoff coefficient ψ indicates the ratio The surface runoff coofificient ψ indicates the ratio
of runoff from a given crea to rainall onto the same area ($\psi<1$).

Runoff coefficient values for various surfaces

In case of surfaces with different runoff
coefficients it is possible to determine the called substitution coefficient for the whole $\psi_{2}=\frac{\psi_{1} \cdot F_{1}+\psi_{2} \cdot F_{2}+\ldots+\psi_{1} \cdot F_{1}}{F_{1}+F_{2}+\ldots+F_{1}}$

For the given retention capacity for the first wave of runoff. you can calcullate the necess

 number of Stormbox units using the following equation:$\mathrm{n}=\frac{\mathrm{V}_{\text {st }}}{\mathrm{V}_{\text {snet }}}$ [pcs]

12.12. Calculating the amount of outtiow in α system for holding the first wave of runofi The necessary tank capacity can be calculated
using the following equation: Calculations should assume precipitation
amounts of tat lest $t 25 \mathrm{~mm}$. The correct amo can be found in the tables in point 12.10, taking can be found in the tables in point 12.10 , taking
into account long-term racinfall (central region) into account long-term raintall centric
$\mathbf{V}_{\mathrm{st}}=\mathrm{P} \cdot \mathbf{F} \cdot \psi\left[\mathrm{m}^{3}\right]$
解 Amount peapitet ton (m)
wave

$V_{\mathrm{st}}=0.029 \cdot 500=14.5 \mathrm{~m}^{3}$
14,5
$=\frac{14,5}{0,206}=70,4 \approx 71$ pcs.

To hold hio tist weve of rnoofi. you need

Tank capacities calculcted using the first wave of runoff holding method - $P=50 \%$ (2 years)

$$
\begin{aligned}
& \begin{array}{l}
\text { The calculations } \\
\text { have been }
\end{array} \\
& \begin{array}{l}
\text { The calculation } \\
\text { have been } \\
\text { performed for }
\end{array} \\
& \begin{array}{l}
\text { performed for a } \\
\text { runoff coefficient } \\
\text { of } \psi=1 . \text {. For runof }
\end{array} \\
& \begin{array}{l}
\text { of } \psi=1.1 \text { Forficient runtif } \\
\text { om roofs, roacds ett. }
\end{array} \\
& \begin{array}{l}
\text { from rofts, rodad eta } \\
\text { the volume iven } \\
\text { in the table should }
\end{array} \\
& \begin{array}{l}
\text { the volumbe given } \\
\text { in the eable should } \\
\text { and }
\end{array} \\
& \begin{array}{l}
\text { in the table shoulc } \\
\text { be mutitioied for } \\
\text { the given surface }
\end{array} \\
& \begin{array}{l}
\text { the given surface } \\
\text { areacond omunt }
\end{array} \\
& \begin{array}{l}
\text { area and amount of } \\
\text { precipitation by the }
\end{array} \\
& \begin{array}{l}
\text { precipitation by the } \\
\text { apporopriate runoff } \\
\text { cooficient value. }
\end{array} \\
& \text { coefficient value. } \\
& \begin{array}{l}
\text { Pipelife calculates } \\
\text { the tank retention }
\end{array} \\
& \begin{array}{l}
\text { the tank retention } \\
\text { capacittractording } \\
\text { with ISS }
\end{array} \\
& \begin{array}{l}
\text { capactry accora } \\
\text { with ISSO } 70-1 \mathrm{an} \\
\text { DWA A-17 }
\end{array}
\end{aligned}
$$

 $\mathrm{p}-20 \%{ }^{20 \%} \quad(5 \mathrm{years})$

12. 13. Calculating the required size of a rainwater infiltration system

Tank dimensions may be calculated e.g. using
the following formula according to DWA-A 138:

> Tank dimensions can also be calculacted using
the formula given in ISSO 70-1. The formula given in ISSO $70-1$
Pipelife calculates the require Pipelire calculatest the required number of boxes
assuming infitration through the bottom and assuming inilitration through the bottom
side walls or throgh side walls only.
The large surface oreaco of side wall The large surface area of sidid wall openings
(approx. 59% of the total surface) ensures (approx. 59% of the total surface) ensures very
favourable conditions for the infiltration of rainwater. II is possible to to check the operation of the system with reduced infiltration through
the bottom (in case of poor
> the bottom (in case of poor maintenance of the

Stormbox system
selection program
The program assists in
choosing the optimum number choosing the optimum number
of boxes for the plamned
moxime of boxes for the planned
maximum tank dimension $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$
Pipelife can also perform Calculutions relateded to the selection of retention tanks
or retention and infiltration tanks with a constant outtiow
through a flow regulator

Stormbox volume depending on tank size

	Lengith										
											10
${ }_{\text {[peal }}$	[m]	0.6	1.2	1.8	24	30	3.6	4.2	4.8	54	
	1.2	0.206	0.412	0.18	0824	1030	${ }^{1.236}$	${ }_{1}^{1.42}$	1.648	1.854	2060
2	${ }^{24}$	0.412	0.824	1.236	1648	2060	2472	2884	3.296	3708	4.120
	36	0.018	1.236	1.854	2472	3000	3708	${ }_{4} 836$	4944	5.562	6.180
	${ }_{48}$	0824	1.648	2472	3228	4.120	4944	5788	${ }_{6} 692$	${ }_{7} 716$	8240
	${ }_{6} 0$	1.030	2060	3000	4.120	5.150	6.180	7210	8240	9270	10.300
	72	1.236	2.472	3.708	4944	6.180	7.416	8.652	9888	11.124	12360
	${ }^{84}$	1.442	1.442	1.442	1.42	1.442	1.42	1.42	1.42	1.42	1.482
${ }^{8}$	96	1.648	3286	4944	6.592	8240	${ }_{9} 9888$	11.536	${ }^{13,184}$	14832	168880
	10.8	1.854	3308	5.562	7.416	9270	${ }^{11.124}$	${ }_{12978}$	14.882	${ }^{16686}$	18.540
10	120	2060	4.120	6.180	8.240	10300	12360	14420	${ }_{16,480}$	18540	20.000
${ }^{11}$	132	2266	${ }_{4.532}$	6,798	9064	11.380	13.596	${ }_{15862}$	18128	20394	22660
12	144	2472	4948	7416	9888	12360	14838	17804	19776	${ }^{22248}$	
13	156	2678	5.356	8.034	10712	13390	10068	${ }^{18746}$	21.424	24.102	26.780
${ }^{14}$	168	2884	5768	8.582	11.536	14.420	17.004	${ }^{20,188}$	${ }^{23072}$	${ }^{25956}$	28840
${ }^{15}$	180	3000	6.180	9270	12360	15450	16540	21.680	24720	27810	30,900
16	192	3296	6.592	${ }_{9888}$	13.184	16.480	19776	23072	26.368	29664	32960
${ }^{17}$	20.4	3.502	7004	10.506	14008	17.510	21012	24514	23016	31.518	${ }_{35020}$
${ }^{18}$	21.6	3708	7.46	11.124	14832	12.540	22248	25956	29.64	138372	37880
19	${ }_{228}$	3914	${ }^{7} 888$	${ }_{11742}$	15.566	${ }^{19570}$	23884	27398	\|31312	${ }_{352286}$	38.20

12.14. Example calculations of the required
number and volume of boxes

The following calculactions assume rainfall
duration of 15 min to severaca hours, with cainfall
protabilt
probability of 1 in 2 years
North-west region of Poland

The calculution of number of boxes is
approximate. To obtain a ccururate calc
approximate. To obtain accurate calculation
please contcat Pipelife Customer Service
Department.

I/f. 13. Operation of the infiltration system

infilitation system should undergo periodic	3.2. Operation in winter
inspections. Settling chambers must be	Underground rainwater infiltration systems are generally resistant to reduced infiltration in winter. Minimum cover layer above the boxes should be preserved, according to the ground are covered with a layer of LECA at least 20 cm in depth. The risk of flooding in freezing temperatures is slight, as torrential rains very rarely fall on frozen ground. The maximum rate of snow melting is 2 mm / h, much less than the runoff of a standard design rainfall
checked for the amo	
is recommended that the chambers sh	
pected every six months and the col	
Stormbox infiltation boxes have 6 inspectio	
opening $5110,100 \mathrm{~mm}$ in diameier and 2 openings $110,160 \mathrm{and} 200 \mathrm{~mm}$ in diameter to	
enable the insertion of cleaning equipment and	
Underground infiltration systems require periodic	
Such inspections should be carried out before periods of frost	
derground systems should be for examp	
Kept ot a suitable distance from trees	
age by	
developing root systems).	
Infiltation boxes should be rinsed,	
Mechanical pre-treatment devices shou	
months check the amount of debris in the	

The following requirements should be met when Part 1: Planning, installation, operation and
nsiang tormox infration systems.

- PN-EN 1610:2002 Construction and inspection
of sewage systems;
PN-ENV 1046 :2007 Plastic pipeline system - Outdoor water and sewage systems -
Overground and underground installation
${ }_{-}^{\text {practices; }}$ PN-EN 1295-1:2002 Static calculations for
- PN-EN 1295-1:12002 Static calculations for
ground-buried dipelines at various load
ground-buried pipelines at various load
conditions. Part liteneral reaurements
PN-B-10736:1999 Ground work Open
- PN-B-1073 1:1999 Ground worku. open
excavations for water and sewage systems
Technical conditions of work
UTechnical conditions of the construction
"Technicalc condititons of the construction
and commissioning of sewage systems".
Techniccal requirements of COBRTI INSTAI
 Centre. Installation Technology in
- Construction, June 2003
- enincation " Drodinage Systems" 138 "llanung, Bau und Betrie

Don-Anlagen zurnurversickerung von

- Nin 198ersol-1 Rainwoter harvesting system
- Din $1889 \cdot 3$ Redinwater harvesting systems - ISSO $70-1$ "Omgacan met hemelwacter binnen
de perceeigrens" 52250 " Kunststof infilitratiesystemen vo
- DWA A-117 Bemessung vo

Regenruckhalterciumen.

- Resulution of the Minister of Transport an
Morine Economy of 2 March 1999 on the Regulation of the Minister of Transport and
Marine Economy of 2 March 1999 on the technicacl conditions to be fulfilled by public
roadd sand their location (Polemd)

PIPALIFE

Pipelife International

Triester Strasse 14
A-2351 Wr. Neudorf
Austria

Phone: + 432236439390
Fox: + 432236439396
info@pipelife.com www.pipelife.com

